No smoke without fire

No one seriously now doubts that cigarette smoking increases your risk of lung cancer and many other diseases, but when the evidence for a relationship between smoking and cancer was first presented in the 1950’s, it was strongly challenged by the tobacco industry.

The history of the scientific fight to demonstrate the harmful effects of smoking is summarised in this article. One difficulty from a statistical point of view was that the primary evidence based on retrospective studies was shaky, because smokers tend to give unreliable reports on how much they smoke. Smokers with illnesses tend to overstate how much they smoke; those who are healthy tend to understate their cigarette consumption. And these two effects lead to misleading analyses of historically collected data.

An additional problem was the difficulty of establishing causal relationships from statistical associations. Similar to the examples in a previous post, just because there’s a correlation between smoking and cancer, it doesn’t necessarily mean that smoking is a risk factor for cancer. Indeed, one of the most prominent statisticians of the time – actually of any time – Sir Ronald Fisher, wrote various scientific articles explaining how the correlations observed between smoking and cancer rates could easily be explained by the presents of lurking variables that induce spurious correlations.

At which point it’s worth noting a couple more ‘coincidences’: Fisher was a heavy smoker himself and also an advisor to the Tobacco Manufacturers Standing Committee. In other words, he wasn’t exactly neutral on the matter. But, he was a highly respected scientist, and therefore his scepticism carried considerable weight.

Eventually though, the sheer weight of evidence – including that from long-term prospective studies – was simply too overwhelming to be ignored, and governments fell into line with the scientific community in accepting that smoking is a high risk factor for various types of cancer.

An important milestone in that process was the work of another British statistician, Austin Bradford Hill. As well as being involved in several of the most prominent cases studies linking cancer to smoking, he also developed a set of 9 (later extended to 10) criteria for establishing a causal relationship between processes. Though still only guidelines, they provided a framework that is still used today for determining whether associated processes include any causal relationships. And by these criteria, smoking was clearly shown to be a risk factor for smoking.

Now, fast-forward to today and there’s a similar debate about global warming:

  1. Is the planet genuinely heating up or is it just random variation in temperatures?
  2. If it’s heating up, is it a consequence of human activity, or just part of the natural evolution of the planet?
  3. And then what are the consequences for the various bio- and eco-systems living on it?

There are correlations all over the place – for example between CO2 emissions and average global temperatures as described in an earlier post – but could these possibly just be spurious and not indicative of any causal relationships?  Certainly there are industries with vested interests who would like to shroud the arguments in doubt. Well, this nice article applies each of Bradford Hill’s criteria to various aspects of climate science data and establishes that the increases in global temperatures are undoubtedly caused by human activity leading to CO2 release in the atmosphere, and that many observable changes to biological and geographical systems are a knock-on effect of this relationship.

In summary: in the case of the planet, the smoke that we see <global warming> is definitely a consequence of the fire we stared <the increased amounts of CO2 released into the atmosphere>.

Leave a Reply